Suryabhan Singh HadaAI EngineerSan Francisco Email: suryabhan90 [at] gmail.com Social: [LinkedIn] Google Scholar |
I am an AI Engineer at LinkedIn, where my work involves the design of Large Language Models, focusing on the development of user embeddings for various query searches across the entire LinkedIn platform. I earned my Ph.D. at UC Merced, advised by Miguel Á. Carreira-Perpiñán, where I primarily researched the interpretability of deep neural networks and their visualization. You can find my CV [here].
Approaches to Interpret Deep Neural Networks
University of California, Merced, USA, 2022.
[external link]
[slides]
Carreira-Perpiñán, M. Á. and Hada, S. S. (2023):
"Inverse classification with logistic and softmax classifiers: efficient optimization".
Unpublished manuscript, 2023, arXiv:2309.08945.
[external link]
[paper preprint]
[Matlab implementation]
Short version at the Workshop on Beyond first order methods in machine learning systems (ICML 2020)
[external link]
[paper preprint]
Carreira-Perpiñán, M. Á. and Hada, S. S. (2023):
"Very fast, approximate counterfactual explanations for decision forests".
37th AAAI Conf. Artificial Intelligence (AAAI 2023), pp. 6935-6943.
[external link]
[paper preprint]
[slides]
[poster]
[Python implementation (coming soon)]
Longer version: Mar. 5, 2022, arXiv:2303.02883
[external link]
[paper preprint]
Hada, S. S., Carreira-Perpiñán, M. Á. and Zharmagambetov, A. (2023):
"Sparse oblique decision trees: a tool to understand and manipulate neural net features".
Data Mining and Knowledge Discovery,
[external link]
[paper preprint]
Many of the figures in the publisher's version are badly messed up, with wrong labels. The arXiv paper has the correct figures.
Also as: Jan. 30, 2023, arXiv:2104.02922
[external link]
[paper preprint]
Hada, S. S. and Carreira-Perpiñán, M. Á. (2022):
"Sparse oblique decision trees: a tool to interpret natural language processing datasets".
International Joint Conf. on Neural Networks (IJCNN 2022).
[external link]
[paper preprint]
[slides]
[© IEEE]
Hada, S. S. and Carreira-Perpiñán, M. Á. (2022):
"Interpretable image classification using sparse oblique decision trees".
IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP 2022), pp. 2759-2763.
[external link] [paper preprint] [slides] [© IEEE]
Hada, S. S. and Carreira-Perpiñán, M. Á. (2021):
"Exploring counterfactual explanations for classification and regression trees".
Int. Workshop and Tutorial on eXplainable Knowledge Discovery in Data Mining (ECML 2021).
[external link]
[paper preprint]
Hada, S. S. and Carreira-Perpiñán, M. Á. (2021):
"Understanding and Manipulating Neural Net Features Using Sparse Oblique Classification Trees".
28th IEEE International Conference on Image Processing (IEEE - ICIP 2021).
[external link]
[paper preprint] [© IEEE]
Hada, S. S. and Carreira-Perpiñán, M. Á. and Zharmagambetov, A. (2021):
"Sparse Oblique Decision Trees:A Tool to Understand and Manipulate Neural Net Features".
Unpublished manuscript, April 6, 2021, arXiv:2104.02922
[external link]
[paper preprint]
Carreira-Perpiñán, M. Á. and Hada, S. S. (2021):
"Counterfactual Explanations for Oblique Decision Trees: Exact, Efficient Algorithms".
35th AAAI Conference on Artificial Intelligence (AAAI 2021).
[external link]
[paper preprint]
[Python implementation (coming soon)]
Longer version:
Carreira-Perpiñán, M. Á. and Hada, S. S.
"Counterfactual Explanations for Oblique Decision Trees: Exact, Efficient Algorithms".
Unpublished manuscript, March 1, 2021, arXiv:2103.01096.
[external link] [paper preprint]
Hada, S. S. and Carreira-Perpiñán, M. Á. (2021):
"Style Transfer by Rigid Alignment in Neural Net Feature Space".
IEEE Conf. Winter Conference of Applications on Computer Vision (WACV 2021)
[external link]
[paper preprint]
[supplementary material] [slides]
[animations] [Python implementation (coming soon)]
[© IEEE]
Longer version:
Hada, S. S. and Carreira-Perpiñán, M. Á.
"Style Transfer by Rigid Alignment in Neural Net Feature Space".
Unpublished manuscript, Sept 27, 2019, arXiv:1909.13690.
[external link] [paper preprint]
Zharmagambetov, A.* and Hada, S. S.* and Carreira-Perpiñán, M. Á. and Gabidolla, M. (2021) (* means equal contribution):
"Non-Greedy Algorithms for Decision Tree Optimization: An Experimental Comparison".
International Joint Conference on Neural Networks (IJCNN 2021).
[external link]
[paper preprint]
[© IEEE]
Longer version:
Zharmagambetov, A.* and Hada, S. S.* and Carreira-Perpiñán, M. Á. and Gabidolla, M. (2019):
"An Experimental Comparison of Old and New Decision Tree Algorithms".
Unpublished manuscript, Nov. 8, 2019, arXiv:1911.03054
[external link]
[paper preprint]
Carreira-Perpiñán, M. Á. and Hada, S. S. (2020):
"Inverse classification with logistic and softmax classifiers: efficient optimization".
Unpublished manuscript, 2020, arXiv:.
[external link] [paper preprint] [Matlab implementation]
Short version at the Workshop on Beyond first order methods in machine learning systems (ICML 2020)
[external link] [paper preprint]
Hada, S. S. and Carreira-Perpiñán, M. Á. (2021):
"Sampling the "Inverse Set" of a Neuron: An Approach to Understanding Neural Nets".
28th IEEE International Conference on Image Processing (IEEE - ICIP 2021).
[external link]
[paper preprint]
[slides]
[poster]
[© IEEE]
Longer version:
Hada, S. S. and Carreira-Perpiñán, M. Á.
"Sampling the "Inverse Set" of a Neuron: An Approach to Understanding Neural Nets".
Unpublished manuscript, Sept 27, 2019, arXiv:1910.04857.
[external link]
[paper preprint]
[animations]
Extended abstract at the Bay Area Machine Learning Symposium, Oct. 19, 2017 (BayLearn 2017)
[external link]
[paper preprint]
[poster]
Suryabhan Singh Hada (2014): "A Fast Encoding Method for Fractal Image Compression".
International Journal of Computer Applications (IJCA), August 2014.,
[external link]