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Introduction

Deep neural nets are accurate black-box models. They have
shown much success in many applications such as computer
vision and natural language processing.

This makes it necessary to understand the internal working of
these networks. What does a given neuron represent?

We solve this by characterizing the region of input space that
excites a given neuron to a certain level; we call this the
inverse set.

This inverse set is a complicated high dimensional object that
we explore using an optimization-based sampling approach.
Inspection of samples of this set by a human can reveal
regularities that help to understand the neuron.
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Inverse set definition

We say an input x is in the inverse set of a given neuron
having a real-valued activation function f if it satisfies the
following two properties:

z1 ≤ f(x) ≤ z2 x is a valid input (1)

where z1, z2 ∈ R are activation values of the neuron.

For example, consider a linear model with weight vector (w),
bias (b), logistic activation function σ(wTx+ b) and all valid
inputs to have pixel values between [0,1]. For z2 = 1
(maximum activation value) and 0 < z1 < z2, the inverse set
will be the intersection of the half space wTx+ c ≥ σ−1(z1)
and the [0,1] hypercube.
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Inverse set for a neuron in a deep neural network

For deep neural networks, we approximate the inverse set with
a sample that covers it in a representative way.

A simple way to do this is to select all the images in the
training set that satisfy eq. (1), but this may rule out all
images.

Therefore, we need an efficient algorithm to sample the
inverse set.
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Sampling the inverse set: an optimization approach

To create a sample x1, . . . ,xn that covers the inverse set, we
transform eq. (1) into a constrained optimization problem:

argmax
x1,x2,··· ,xn

n∑
i,j=1

‖xi − xj‖22 s.t. z1 ≤ f(x1), . . . , f(xn) ≤ z2.

The objective function ensures that the samples are different
from each other and satisfy eq. (1).

It has two issues. The generated images are noisy and are very
sensitive to small changes in their pixels.
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Sampling the inverse set: an optimization approach

We solve the issues in following way:

To counter the noisy image issue, we use generator network G
to generate images from a code vector c.
For the second issue, we compute distances on a
low-dimensional encoding E(G(c)) of the generated images
constructed by an encoder E.

Our final formulation for generating n samples.

argmax
c1,c2,··· ,cn

n∑
i,j=1

‖E(G(ci))−E(G(cj))‖22

s.t. z1 ≤ f(G(c1)), . . . , f(G(cn)) ≤ z2.
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Computation constraints

Because of the quadratic complexity of the objective function
over the number of samples n, it is computationally expensive
to generate many samples.

It involves optimizing all code vectors (c) together; for larger
n, it is not possible to fit all in the GPU memory.

Two approximation:

Stop the optimization algorithm once the samples enter the
feasible set, as, by that time, the samples are already
separated.
Create the samples incrementally, K samples at a time (with
K � n).
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Faster sampling approach

Optimize the objective function for the first K samples,
initializing the code vectors c with random values. We stop
the optimization once the samples are in the feasible set.
These samples are then fixed (called seeds C0).

The next K samples are generated by the following equation:

argmax
c1,c2,··· ,cK

K∑
i,j=1

‖E(G(ci))−E(G(cj))‖22+

K∑
i=1

|C0|∑
y=1

‖E(G(ci))−E(G(cy))‖22

s.t. z1 ≤ f(G(c1)), . . . , f(G(cK)) ≤ z2 and cy ∈ C0.

We initialize them with the previous K samples and take a
single gradient step in the feasible region. The resultant
samples are the new K samples.
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Experiments

neuron # 981 volcano class.
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Inverse set Intersection

neuron #664 (monastery), [50,60]

neuron #862 (toilet seat), [50,60]

Inverse set Intersection
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Conclusion

The goal of understanding what a neuron in a deep neural
network may be representing is not a well-defined problem.

For some neurons, their preferred response does correlate well
with intuitive concepts or classes, such as the example of
volcano class.

By characterizing a neuron’s preference by a diverse set of
examples, we can explain this preference in a more holistic
way.

Our sampling method also has more general applicability; just
by modifying the constraints, it can also be used for high
dimensional sampling in other domains.
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Thank You !
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